22 research outputs found

    Wind Turbine Blade Radar Signatures in the Near Field:Modeling and Experimental Confirmation

    Get PDF
    This paper presents methods and results in modeling wind turbine dynamic radar signatures in the near field. The theoretical analysis begins with the simpler case of modeling wind turbine blades as rectangular plates. The theoretical radar signature for the wind turbine in the near field is formulated and its main peculiarities are investigated. Subsequently, the complex shape of the blades is considered and the corresponding radar signatures are modeled. Theoretical modeling is confirmed for both cases via experimental testing in laboratory conditions. It is shown that the experimental results are in good accordance with the theoretically predicted signatures

    Controlled transportation of light by light at the microscale

    Get PDF
    We show how light can be controllably transported by light at microscale dimensions. We design a miniature device that consists of a short segment of an optical fiber coupled to transversally oriented input-output microfibers. A whispering gallery soliton is launched from the first microfiber into the fiber segment and slowly propagates along its mm-scale length. The soliton loads and unloads optical pulses at designated input-output microfibers. The speed of the soliton and its propagation direction is controlled by the dramatically small, yet feasible to introduce, permanently or all-optically, nanoscale variations of the effective fiber radius

    Optimized frequency comb spectrum of parametrically modulated bottle microresonators

    Get PDF
    Optical frequency combs generated by parametric modulation of optical microresonators are usually described by lumped-parameter models, which do not account for the spatial distribution of the modulation. This study highlights the importance of this spatial distribution in the Surface Nanoscale Axial Photonics (SNAP) platform, specifically for elongated SNAP bottle microresonators with a shallow nanometre-scale effective radius variation along its axial length. SNAP bottle microresonators have much smaller free spectral range and may have no dispersion compared to microresonators with other shapes (e.g., spherical and toroidal), making them ideal for generating optical frequency combs with lower repetition rates. By modulating parabolic SNAP bottle microresonators resonantly and adiabatically, we show that the flatness and bandwidth of the optical frequency comb spectra can be enhanced by optimizing the spatial distribution of the parametric modulation. The optimal spatial distribution can be achieved experimentally using piezoelectric, radiation pressure, and electro-optical excitation of a SNAP bottle microresonator

    Effectiveness of a strategy that uses educational games to implement clinical practice guidelines among Spanish residents of family and community medicine (e-EDUCAGUIA project):A clinical trial by clusters

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias FIS Grant Number PI11/0477 ISCIII.-REDISSEC Proyecto RD12/0001/0012 AND FEDER Funding.Background: Clinical practice guidelines (CPGs) have been developed with the aim of helping health professionals, patients, and caregivers make decisions about their health care, using the best available evidence. In many cases, incorporation of these recommendations into clinical practice also implies a need for changes in routine clinical practice. Using educational games as a strategy for implementing recommendations among health professionals has been demonstrated to be effective in some studies; however, evidence is still scarce. The primary objective of this study is to assess the effectiveness of a teaching strategy for the implementation of CPGs using educational games (e-learning EDUCAGUIA) to improve knowledge and skills related to clinical decision-making by residents in family medicine. The primary objective will be evaluated at 1 and 6months after the intervention. The secondary objectives are to identify barriers and facilitators for the use of guidelines by residents of family medicine and to describe the educational strategies used by Spanish teaching units of family and community medicine to encourage implementation of CPGs. Methods/design: We propose a multicenter clinical trial with randomized allocation by clusters of family and community medicine teaching units in Spain. The sample size will be 394 residents (197 in each group), with the teaching units as the randomization unit and the residents comprising the analysis unit. For the intervention, both groups will receive an initial 1-h session on clinical practice guideline use and the usual dissemination strategy by e-mail. The intervention group (e-learning EDUCAGUIA) strategy will consist of educational games with hypothetical clinical scenarios in a virtual environment. The primary outcome will be the score obtained by the residents on evaluation questionnaires for each clinical practice guideline. Other included variables will be the sociodemographic and training variables of the residents and the teaching unit characteristics. The statistical analysis will consist of a descriptive analysis of variables and a baseline comparison of both groups. For the primary outcome analysis, an average score comparison of hypothetical scenario questionnaires between the EDUCAGUIA intervention group and the control group will be performed at 1 and 6months post-intervention, using 95% confidence intervals. A linear multilevel regression will be used to adjust the model. Discussion: The identification of effective teaching strategies will facilitate the incorporation of available knowledge into clinical practice that could eventually improve patient outcomes. The inclusion of information technologies as teaching tools permits greater learning autonomy and allows deeper instructor participation in the monitoring and supervision of residents. The long-term impact of this strategy is unknown; however, because it is aimed at professionals undergoing training and it addresses prevalent health problems, a small effect can be of great relevance. Trial registration: ClinicalTrials.gov: NCT02210442.Publisher PDFPeer reviewe

    Optimized frequency comb spectrum of parametrically modulated bottle microresonators

    No full text
    “Previous studies investigating the creation of optical frequency combs through parametric modulation of microresonators rely on lumped-element models that do not consider how the modulations are spatially distributed. The current study underscores the crucial role of these spatial distributions in SNAP bottle microresonators, particularly in producing optical frequency combs with low repetition rate

    Four-port SNAP microresonator device

    Get PDF
    It is well known from quantum mechanics that the transmission amplitude of a symmetric double-barrier structure can approach unity at the resonance condition. A similar phenomenon is observed in optics for light which propagates between two waveguides weakly coupled through a microresonator. Examples of microresonators used for this purpose include ring, photonic crystal, toroidal, and bottle microresonators. However, ring and photonic crystal photonic circuits, once fabricated, cannot be finely tuned to arrive at the mentioned resonant condition. In turn, it is challenging to predictably adjust coupling to toroidal and bottle microresonators by translating the input–output microfibers, since the modes of these resonators are difficult to separate spatially. Here we experimentally demonstrate a four-port micro-device based on a SNAP microresonator introduced at the surface of an optical fiber. The eigenmodes and corresponding eigenwavelengths of this resonator are clearly identified for both polarization states by the spectrograms measured along the length of the fiber. This allows us to choose the resonant wavelength and simultaneously determine the positions of the input–output microfiber tapers to arrive at the required resonance condition

    The right occipital lobe and poor insight in first-episode psychosis

    Get PDF
    Lack of insight is a core feature of non-affective psychosis and has been associated with poorer outcomes. Brain abnormalities underlying lack of insight have been suggested, mostly in the frontal lobe, although previous research showed mixed results. We used a voxel-based morphometry (VBM) analysis in 108 first-episode non-affective psychosis patients to investigate the pattern of brain structural abnormalities related to lack of insight. In addition, 77 healthy volunteers were compared with the patients classified as having poor and good insight. The shortened version of the Scale to Assess Unawareness of Mental Disorder was used to evaluate insight. Patients with poor insight (n = 68) compared with patients with good insight (n = 40) showed a single significant cluster (kc = 5834; PcFWE = 0.001) of reduced grey matter volume (GMV) in the right occipital lobe extending to its lateral and medial surfaces, the cuneus, and the middle temporal gyrus. In addition, GMV at this cluster showed a negative correlation with the score of the SUMD (r = -0.305; p = 0.001). When comparing patients with poor insight with healthy subjects overall reductions of GMV were found, mainly in frontal and occipital lobes. Hence, poor insight in non-affective psychosis seems to be associated with specific brain abnormalities in the right occipital and temporal cortical regions. Dysfunction in any combination of these areas may contribute to lack of insight in non-affective psychosis. Specifically, the 'right' hemisphere dysfunction underlying impaired insight in our sample is consistent with previously reported similarities between lack of insight in psychosis and anosognosia in neurological disorders
    corecore